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Controlling continuous chaotic dynamics by periodic proportional pulses
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~Received 2 September 1997!

It has been shown that proportional pulsesX(t)→kX(t), applied at regular time intervals to an unknown
chaotic dynamic, may stabilize the dynamic at a periodic orbit. Given an integerp, we showed where propor-
tional pulses can stabilize the dynamicX8(t)5F„X(t)… at a periodic orbit of periodp and how to calculate the
corresponding factork. The existence of a Poincare´ section is assumed.@S1063-651X~98!09001-1#

PACS number~s!: 05.45.1b
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In the last decade, a large number of reports have inv
tigated the problem of controlling chaos. The aim was
stabilize the dynamic at a periodic orbit. Ott, Grebogy, a
York @1# performed small modifications of a system’s p
rameter to stabilize a chaotic orbit. Dressler and Nitsche@2#
applied the method to delay coordinates. Hartley and M
sayebi@3#, and Pyragas@4# used feedback and delay fee
back to master chaos. Braiman@5# tamed chaos by introduc
ing small periodic perturbations into a system parame
Interaction between a system and its subsystems can
chronize chaotic dynamics@6#. We have used a Kalman filte
to control chaos in the presence of large dynamical noise@7#.
Maneuvers to control chaos have been tested in diffe
areas, including laboratory physics@8–10#, cardiology@11#,
and biochemistry@12#.

An interesting maneuver to control chaos was introdu
by Matias and Gu¨émez @13,14#. In the case of a continuou
dynamic, the authors performed instantaneous pulses on
system variables,X(t), at a periodt, in the form

X~ t !→kX~ t ! ~with t5pt!, ~1!

wherek is a constant. Matias and Gu¨émez have given severa
examples in which Eq.~1! actually stabilizes chaotic dynam
ics at a periodic orbit. If the dynamic is unknown, one c
only test the control with several values oft and k. How-
ever, when the dynamic is known, as in the examples sh
in their work, the authors did not give the method to calc
late the constantst andk, in order to apply the proportiona
control.

In the present work, we raised the following general qu
tion: Given a dynamic

X8~ t !5F„X~ t !… ~2!

an arbitrary pointM in the phase space, and an arbitra
integer p, can one, by using proportional control, stabili
the dynamic at a periodic orbit of given periodp and cross-
ing the given pointM? In the case where the dynamic po
sesses a Poincare´ section, we could give an answer~yes/no!
to this question and when the answer is yes, show how
calculate the factork and where to perform the control t
achieve the stabilization.

We suppose that a Poincare´ section of this dynamic is
available. The generic points of this section will be deno
by X( i ) where the indexi designates the successive visits
the orbit to the section. We assumed that in the Poinc´
571063-651X/98/57~1!/378~3!/$15.00
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plane referred to coordinates (x,y), the section„x( i ),y( i )…
could be modelized in the form

x~ i 11!5 f „x~ i !…. ~3!

This assumption means that, for a given trajectory, the va
of x at the instant when the trajectory crosses the sec
uniquely specifies the components ofX(t), i.e., that two con-
stants of motion exist. In a general term, assumption~3!
requires thatn22 constants of motion exist, when the d
namic is of dimensionn.

Suppose now that we kick at the orbit when it visits t
Poincare´ section, by multiplyingx( i ) by a factork, once
everyp visits. Let

g~x!5k f ~p!~x!, ~4!

where f (p) is the p-times composition of the mapf with
itself. A fixed pointxs of g is any solution of the equation

k f ~p!~xs!5xs ~5!

and this fixed point is locally stable if

21,k f ~p!8~xs!,1, ~6!

where the prime designates the derivative of the compo
function. A stable fixed point ofg defines a close orbit of the
initial dynamic kicked in the Poincare´ section by the control
procedure.

We suppose that the original map is chaotic and wish
control it to a stable periodic orbit of periodp, by kicking at
its orbit once everyp visits of the orbit to the Poincare´ sec-
tion.

To stabilize the dynamic, it is sufficient to find a pointxs
on the Poincare´ section and a factork satisfying Eq.~5! and
inequalities Eq.~6!. Takingk from Eq. ~5! and defining

Cp~x!5
x f ~p!8~x!

f ~p!~x!
~7!

Eq. ~6! becomes

21,Cp~x!,1. ~8!

Inequalities~8! are the key of the method: if a pointxs
satisfies Eq.~8!, and only in that case, then with the kickin
378 © 1998 The American Physical Society
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57 379CONTROLLING CONTINUOUS CHAOTIC DYNAMICS BY . . .
factor k defined by Eq.~5!, the control procedure will stabi
lize the dynamic at a periodic orbit of periodp, passing
through the pointxs .

In practice, controlling chaos is interesting only when w
can stabilize the trajectory at a periodic orbit of ‘‘low’’ pe
riods, say,p5125. In that case, we may proceed as fo
lows. We generate a trajectory starting from an arbitr
point. At each visit of the orbit to the Poincare´ section, we
test inequalities~8! for p51, 2, 3, 4, and 5. If Eq.~8! is
satisfied for such a periodp, we calculate the factork using
Eq. ~5! and operate the control immediately. The trajecto
will be stabilized at a periodic orbit of periodp crossing the
given point. By ergodicity, our trajectory will visit almost a
points of the section, therefore our method can explore
possibility to stabilize the dynamic at almost all points of t
Poincare´ section.

Consider, as an example, the Ro¨ssler dynamic@15#

x8~ t !52y~ t !2z~ t !,

y8~ t !5x~ t !10.2y~ t !,

z8~ t !50.21z~ t !@x~ t !25.7#.

This map has a well-known Poincare´ section defined by the
points wherey(t)1z(t) crosses zero from negative to pos
tive values, or equivalently whenx(t) reaches a local maxi
mum. Figure 1~a! shows a portion of the Ro¨ssler trajectory,
and its successive visits to the Poincare´ section~the Poincare´
section is the transversal line cutting the orbit at points wh

FIG. 1. ~a! Part of an orbit of the Ro¨ssler dynamic. The trans
versal~a! part of an orbit of the Ro¨ssler dynamic. The transversa
line is the Poincare´ section~points where thex variable reaches a
maximal level!. ~b! Recurrent map of the Poincare´ section.~c! De-
rivative of the recurrent map@derivative of the function shown in
~b!#.
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FIG. 2. Control procedure:~a! The orbit arrives at the section a
point A, and kicked by the control procedure to pointB. ~b! Web
diagram of the kicking procedure: thex coordinate of pointA is
multiplied by the kicking factork ~0.8 in this case! to get the point
C, from which one joins the diagonal atD and the recurrent curve
at B. This gives thex coordinate ofB. The y andz coordinates of
B are obtained by interpolation from coordinates of the Poinc´
section.

FIG. 3. ~a! The functionCp(x) in the Poincare´ section and for
p51 to 5. Values of the function in the range21, 1 are shown. If
an x value is such that21,Cp(x),1, then the kicking procedure
can stabilize the trajectory at a periodic orbit crossingx. ~b! Four
examples of stabilizing the orbit in the Poincare´ section.
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x(t) is maximal!. Figure 1~b! shows the relationship relatin
successive visitsx(n) andx(n11) of the orbit to the Poin-
carésection. Figure 1~c! shows the derivative of the recurre
map relatingx(n) to x(n11). The derivative was calculate
numerically.

Figure 2 shows how to perform the kicking control. Th
orbit visits the Poincare´ section at the pointA in Fig. 2~a!.
The control procedure will move it to the pointB. To calcu-
late the position ofB, we go to the web diagram in Fig. 2~b!.
The value ofx at A is multiplied by the kicking factork (0.8
in this example! to get the pointC, from there we joint the
diagonal atD and then the recurrent map atB. Once thex
coordinate ofB is known, we look at the table of point
„x( i ),y( i ),z( i )… of the Poincare´ section. By interpolation, we
calculate they andz coordinates corresponding to thex co-
ordinate ofB. This gives the position of pointB in Fig. 2~a!,
from there we free the orbit and it continues its way follo
ing the Rössler dynamic.

To control the dynamic, it is sufficient to look for point
in the Poincare´ section that satisfy inequalities~8!. Figure
3~a! shows the functionCp(x) for p51, 2, 3, 4, and 5, and
for all x in the Poincare´ section. We drew onlyCp(x) values
within 21 and 1. The figure shows that forp51, we can
stabilize the orbit at every point up to about 8.6 and only
these points. Forp52, we can stabilize the orbit at 3 range
of x values, shown in the figure. There are 6 accepta
ranges ofx values for period 3, 10 narrow ranges ofx values
for period 4, and 18 intervals of acceptablex values for
period 5. Figure 3~b! shows 4 examples of stabilizing th
recurrent map at period 1, 2, 3, and 4. Figure 4 shows
stabilized orbits, of periods 2, 3, 4, and 5, controlled by
kicking method.

The above method explores the possibility to control
dynamic at a periodic orbit crossing any point on the Po
caré section. If one wishes to stabilize the orbit at a cyc
passing through a point not on the section, it is sufficien
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follow the trajectory from that point until it arrives at a poin
on the Poincare´ section and then apply there the control pr
cedure. A trajectory issued from any point will reach t
Poincare´ section at a certain moment. Therefore, our meth
explores in fact the possibility to stabilize the orbit throu
any point in the attractor.

To conclude, we have presented an analysis of the ef
of regularly kicking at the trajectory of a continuous chao
dynamic when the orbit reaches a given Poincare´ section.
Here kicking means multiplying a variable of the section
a constant. We have shown that such a procedure can s
lize the dynamics at a large number of different points on
section. For eachp, we have shown how to calculate th
kicking factork, which may stabilize the dynamic.

FIG. 4. Examples of stabilizing the Ro¨ssler’s orbit at periods 2,
3, 4, and 5, using the kicking procedure.
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