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Controlling continuous chaotic dynamics by periodic proportional pulses
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It has been shown that proportional pulséd)—kX(t), applied at regular time intervals to an unknown
chaotic dynamic, may stabilize the dynamic at a periodic orbit. Given an infegee showed where propor-
tional pulses can stabilize the dynamX&(t) = F(X(t)) at a periodic orbit of periogp and how to calculate the
corresponding factok. The existence of a Poincasection is assumefiS1063-651%98)09001-1

PACS numbds): 05.45+b

In the last decade, a large number of reports have inveslane referred to coordinates,§), the section(x(i),y(i))
tigated the problem of controlling chaos. The aim was to;qguid be modelized in the form

stabilize the dynamic at a periodic orbit. Ott, Grebogy, and
York [1] performed small modifications of a system’s pa- x(i+1)=1(x(i)). 3)
rameter to stabilize a chaotic orbit. Dressler and Nitd&je
applied the method to delay coordinates. Hartley and MosThis assumption means that, for a given trajectory, the value
sayebi[3], and Pyraga$4] used feedback and delay feed- of x at the instant when the trajectory crosses the section
back to master chaos. Braimf| tamed chaos by introduc- uniquely specifies the componentsXft), i.e., that two con-
ing small periodic perturbations into a system parameterstants of motion exist. In a general term, assumptign
Interaction between a system and its subsystems can syrequires thain—2 constants of motion exist, when the dy-
chronize chaotic dynamid$]. We have used a Kalman filter namic is of dimensiom.
to control chaos in the presence of large dynamical naike Suppose now that we kick at the orbit when it visits the
Maneuvers to control chaos have been tested in differerfPoincaresection, by multiplyingx(i) by a factork, once
areas, including laboratory physig8—10], cardiology[11], everyp visits. Let
and biochemistry12].

An interesting maneuver to control chaos was introduced g(x)=kfP(x), (4)
by Matias and Gemez[13,14. In the case of a continuous

X X (p) . _ . . .
dynamic, the authors performed instantaneous pulses on tijgere '’ is the p-times composition of the map with
system variablesX(t), at a periodr, in the form itself. A fixed pointx of g is any solution of the equation

X(t)—kX(t) (with t=p7), (1) kfP(xg) =Xs (5)

wherek is a constant. Matias and ‘@uez have given several and this fixed point is locally stable if
examples in which Eq.1) actually stabilizes chaotic dynam- )’
ics at a periodic orbit. If the dynamic is unknown, one can —1<kf® (x5 <1, (6)

only test the control with several values efandk. How- here the prime designates the derivative of the composite
ever, when the dynamic is known, as in the examples show P 9 b

in their work, the authors did not give the method to calcu-.unCtion' A stable fixed point of defines a close orbit of the

late the constants andk, in order to apply the proportional g]rl(t)lslegzpeamlc kicked in the Poincarsection by the control
control. :

; : We suppose that the original map is chaotic and wish to
tior|1r'] giséar:eseant wor_k, we raised the following general 448 ontrol it to a stable periodic orbit of periqu by kicking at
: ynamic ) . - _ L
its orbit once every visits of the orbit to the Poincarsec-
X' () =F(X(1)) (2 fion,
To stabilize the dynamic, it is sufficient to find a poit
an arbitrary pointM in the phase space, and an arbitraryon the Poincarsection and a factdk satisfying Eq.(5) and
integer p, can one, by using proportional control, stabilize inequalities Eq(6). Takingk from Eg. (5) and defining
the dynamic at a periodic orbit of given peripdand cross-
ing the given pointM? In the case where the dynamic pos- xf“’)'(x)
sesses a Poincasection, we could give an answges/no Cp(x)= W
to this question and when the answer is yes, show how to
calculate the factok and where to perform the control 1o gq (6) becomes
achieve the stabilization.
We suppose that a Poincasection of this dynamic is —1<Cy(x)<1. (8)
available. The generic points of this section will be denoted
by X(i) where the index designates the successive visits of  Inequalities(8) are the key of the method: if a point
the orbit to the section. We assumed that in the Poincareatisfies Eq(8), and only in that case, then with the kicking

)
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FIG. 2. Control procedurda) The orbit arrives at the section at
point A, and kicked by the control procedure to poiit (b) Web

§ or 1 diagram of the kicking procedure: thecoordinate of pointA is
§ (©) multiplied by the kicking factok (0.8 in this caseto get the point
52} 1 C, from which one joins the diagonal & and the recurrent curve
at B. This gives thex coordinate oB. They andz coordinates of
4 B are obtained by interpolation from coordinates of the Poincare
4 6 8 10 12 section.

x(n)

FIG. 1. (a) Part of an orbit of the Resler dynamic. The trans-
versal(a) part of an orbit of the Resler dynamic. The transversal

line is the Poincareection(points where thex variable reaches a !
maximal leve). (b) Recurrent map of the Poincasection.(c) De- Ci® o . . , 4
rivative of the recurrent mafderivative of the function shown in T4 8 3 10
(b)]. Cy(x) Of / \ 1
R - .

factork defined by Eq(5), the control procedure will stabi- Cax) 14 . 8 1'”
lize the dynamic at a periodic orbit of periga, passing FHor / \ / \ I \
through the poinks. 1 5 5 0

In practice, controlling chaos is interesting only when we Cyx o} / \ [' \/ \ I ]
can stabilize the trajectory at a periodic orbit of “low” pe- 4 . .
riods, say,p=1-5. In that case, we may proceed as fol- e | 4 P 8 e
lows. We generate a trajectory starting from an arbitrary 53 0 \/\ [ l \ l ] I
point. At each visit of the orbit to the Poincasection, we 1y, 5 8 10
test inequalities(8) for p=1, 2, 3, 4, and 5. If Eq(8) is @ X

satisfied for such a periog, we calculate the factdc using

Eqg. (5) and operate the control immediately. The trajectory
will be stabilized at a periodic orbit of perigul crossing the
given point. By ergodicity, our trajectory will visit almost all
points of the section, therefore our method can explore the
possibility to stabilize the dynamic at almost all points of the
Poincaresection.

Consider, as an example, thé $2er dynamid15] 80
X' (1)=—y(t)—z(1),
80
y' (1) =x(t)+0.2y(t),
Z'(t)=0.24+z(t)[x(t) —5.7]. 100

This map has a well-known Poincasection defined by the

points wherey(t) +2(t) crosses zero from negative to posi-  Fig. 3. (a) The functionC,(x) in the Poincafesection and for
tive values, or equivalently whex(t) reaches a local maxi- p=1 to 5. Values of the function in the rangel, 1 are shown. If

mum. Figure 1a) shows a portion of the 'F93|er trajectory, anx value is such that- 1<C,(x)<1, then the kicking procedure
and its successive visits to the Poincaeetion(the Poincare can stabilize the trajectory at a periodic orbit crossingb) Four

section is the transversal line cutting the orbit at points wherexamples of stabilizing the orbit in the Poincamction.
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X(t) is maxima). Figure 1b) shows the relationship relating 15 30

successive visitg(n) andx(n+1) of the orbit to the Poin- 10 20

caresection. Figure (c) shows the derivative of the recurrent  « N

map relatingk(n) to x(n+1). The derivative was calculated 5 10

numerically. 0 0

Figure 2 shows how to perform the kicking control. The 20 50 20 20

orbit visits the Poincarsection at the poinA in Fig. 2(a). 0 0 0 0

The control procedure will move it to the poiBt To calcu- y 20 20 x y 20 20 x

late the position 0B, we go to the web diagram in Fig(l®.
The value ofx at A is multiplied by the kicking factok (0.8
in this examplg to get the pointC, from there we joint the

. 30 30
diagonal atD and then the recurrent map Rt Once thex
coordinate ofB is known, we look at the table of points 20 20
(x(i),y(i),z(i)) of the Poincaresection. By interpolation, we "4, M0
calculate they andz coordinates corresponding to tkeco-
ordinate ofB. This gives the position of poir® in Fig. 2(a), 28 28
from there we free the orbit and it continues its way follow- 0 0 20 0 0 20
ing the R®sler dynamic. y 20 20 x y 20 20 x

To control the dynamic, it is sufficient to look for points o . . .

in the Poincaresection that satisfy inequalitie®). Figure FIG. 4. Examples of stabilizing the Bsler’s orbit at periods 2,

3(a) shows the functiol€ ,(x) for p=1, 2, 3, 4,and 5, and 3. 4 and 5, using the kicking procedure.
for all x in the Poincaresection. We drew onlg,(x) values
within —1 and 1. The figure shows that for=1, we can follow the trajectory from that point until it arrives at a point
stabilize the orbit at every point up to about 8.6 and only aton the Poincarsection and then apply there the control pro-
these points. Fop=2, we can stabilize the orbit at 3 ranges cedure. A trajectory issued from any point will reach the
of x values, shown in the figure. There are 6 acceptabléoincaresection at a certain moment. Therefore, our method
ranges ok values for period 3, 10 narrow rangesxofalues  explores in fact the possibility to stabilize the orbit through
for period 4, and 18 intervals of acceptablevalues for any point in the attractor.
period 5. Figure @) shows 4 examples of stabilizing the  To conclude, we have presented an analysis of the effect
recurrent map at period 1, 2, 3, and 4. Figure 4 shows thef regularly kicking at the trajectory of a continuous chaotic
stabilized orbits, of periods 2, 3, 4, and 5, controlled by thedynamic when the orbit reaches a given Poincseetion.
kicking method. Here kicking means multiplying a variable of the section by
The above method explores the possibility to control thea constant. We have shown that such a procedure can stabi-
dynamic at a periodic orbit crossing any point on the Poinize the dynamics at a large number of different points on the
caresection. If one wishes to stabilize the orbit at a cyclesection. For eactp, we have shown how to calculate the
passing through a point not on the section, it is sufficient tdicking factork, which may stabilize the dynamic.
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